Vitamin B9 (Folic Acid): Benefits, Dosage, Contraindications

Updated on

Vitamin B9 is an essential water-soluble vitamin, present in two forms: folic acid and folate. Folic acid was first isolated from spinach leaves in 1941 and synthesized in 1946, hence its name derived from the Latin word "folium," meaning leaf. Folates are supplied by food in the form of polyglutamates, in contrast to folic acid, which is a more stable synthetic form with better bioavailability and is proposed for therapeutic use and in dietary supplements. Foods rich in folates mainly include green vegetables, dried fruits, liver, nutritional yeast, and egg yolk. They are converted to monoglutamates in the intestine before their absorption, primarily jejunal. The two forms of Vitamin B9 (folic acid and folates) are no longer distinguishable after intestinal absorption. Folic acid is converted in the enterocyte to tetrahydrofolate (THF), corresponding to the active tissue form, then after methylation into N5-methylTHF, it becomes the circulating form. Vitamin B9 deficiency is accompanied by various neurological disorders; moreover, in the bone marrow, a vitamin B9 deficiency leads to an anomaly in cellular maturation and division resulting in abnormal red blood cell precursors, called megaloblasts. Megaloblasts are unable to transform properly into red blood cells, and many are phagocytized by macrophages in the bone marrow, contributing to the development of megaloblastic anemia. Some patients with chronic fatigue syndrome also have reduced folic acid levels. Crohn's disease and venous thrombosis have also been associated with decreased folate levels. Folic acid is used during pregnancy or in the pre-conception phase to prevent miscarriages and neural tube defects. Folic acid is also taken for many disorders, including depression, stroke, and cognitive decline more marked than normal in the elderly.
📚 Read also |
: notre comparatif (2025)

Other name(s) 

Folic acid, folate

Scientific name(s)

5'-methyltetrahydrofolate

Family or group: 

Vitamins


Indications

Rating methodology

EFSA approval.

Several clinical trials (> 2) randomized controlled with double blind, including a significant number of patients (>100) with consistently positive outcomes for the indication.
Several clinical trials (> 2) randomized controlled with double blind, and including a significant number of patients (>100) with positive outcomes for the indication.
One or more randomized studies or multiple cohorts or epidemiological studies with positive outcomes for the indication.
Clinical studies exist but are uncontrolled, with conclusions that may be positive or contradictory.
Lack of clinical studies to date that can demonstrate the indication.


Vitamin B9 Deficiency
✪✪✪✪✪

The imbalance between dietary intake and needs is the leading cause of deficiency worldwide, particularly when needs increase (pregnancy, breastfeeding, chronic hemolysis) or when digestive absorption is impaired in chronic diarrhea and inflammatory bowel diseases (Crohn's disease, tropical sprue, celiac disease). Chronic alcoholism also induces deficiencies due to lack of intake, malabsorption, liver uptake impairment, and increased renal excretion. Renal insufficiency in dialysis is also associated with folate deficiency, as are certain "anti-metabolite" treatments that impair folate use, such as antiepileptics. The most common consequence of deficiencies is hematopoietic, a direct reflection of decreased DNA synthesis. This explains mucosal disorders associated with these deficiencies, such as glossitis, and especially the classic megaloblastic anemia. Vitamin B9 deficiency is also accompanied by various neurological disorders, due to lack of ATP, GTP (phosphate group transfer coenzymes), and phospholipids forming myelin sheaths. In cases of anemia, doses of about 5 to 15 mg per day are usually prescribed.

Posologie

posologieOrally

posologie0.33 - 15 mg


Pregnancy
✪✪✪✪✪

Epidemiological studies have shown an association between maternal folic acid status and the frequency of miscarriages, prematurity rates, and neural tube closure anomalies. The need for folates in women increases by 50% during pregnancy, during which, in the first trimester, a diet enriched with at least 600 micrograms per day (600 mcg/day) of folates is recommended. Before conception, a 400 mcg folate supplementation is recommended for 1 to 3 months. Women with a history of congenital neural tube defects generally take a higher dose of folic acid, corresponding to 4 mg per day, starting one month before and continuing until three months after conception.

Posologie

posologieOrally

posologie0.4 - 4 mg


Synergies

Folic acid supplementation during early pregnancy and the risk of gestational hypertension and preeclampsia.
Folic acid supplementation for the prevention of neural tube defects: US preventive services task force recommendation statement
Folic acid supplementation for the prevention of neural tube defects: US preventive services task force recommendation statement.
The effect of folic acid, protein energy and multiple micronutrient supplements in pregnancy on stillbirths.
Folic acid, methylation and neural tube closure in humans.
Folate status during pregnancy in women is improved by long-term high vegetable intake compared with the average western diet.
Scientific Opinion on the substantiation of health claims related to folate and blood formation (ID 79), homocysteine metabolism (ID 80), energy-yielding metabolism (ID 90), function of the immune system (ID 91), function of blood vessels (ID 94, 175, 192), cell division (ID 193), and maternal tissue growth during pregnancy (ID 2882)
Guidelines for Perinatal Care. 7th ed. Washington, DC: The American Academy of Pediatrics and the American College of Obstetricians and Gynecologists;
Letter regarding dietary supplement health claim for folic acid with respect to neural tube defects.
Effect of folic acid supplementation during pregnancy on gestational hypertension/preeclampsia: A systematic review and meta-analysis.
Maternal folic acid supplementation for the prevention of preeclampsia: A systematic review and meta-analysis.
Folic acid to reduce neonatal mortality from neural tube disorders.

Fatigue
✪✪✪✪✪

Vitamin B9 (folate) plays a role in reducing fatigue by supporting cellular energy production and regulating oxygen in the body. Folate is involved in several carbon transfer reactions essential for amino acid metabolism and nucleic acid synthesis. A folate deficiency can lead to megaloblastic anemia, reducing the blood's oxygen transport capacity and increasing fatigue. Folate and B vitamins supplementation can be an effective strategy to support cognitive function and reduce fatigue. European health authorities (EFSA, European Food Safety Authority, and the European Commission) have considered that dietary supplements containing vitamin B9 may claim to contribute to the reduction of fatigue and normal cognitive functions.

Posologie

posologieOral

posologie0.4 - 15 mg


Synergies


Fetal Development
✪✪✪✪✪

Folic acid, essential before and during pregnancy, plays a key role in fetal development. A low level of folic acid increases the risk of congenital malformations such as neural tube defects. Folic acid supplementation before conception and during the first months of pregnancy is associated with a significant reduction in these risks. A Cochrane review showed that folic acid supplementation improves average birth weight and reduces the incidence of megaloblastic anemia, without a significant impact on pregnancy outcomes such as preterm births or preeclampsia. Clinical guidelines recommend that anyone who might become pregnant take 400 mcg of folic acid per day through fortified foods or supplements to prevent neural tube defects in infants. During pregnancy, 600 mcg of folic acid per day is advised.

Posologie

posologieOral

posologie0.33 - 15 mg


Synergies


Depression
✪✪✪✪

Studies suggest that depression is linked to a low folate level, particularly in women. Oral folic acid taken in conjunction with conventional antidepressants seems to improve treatment response in patients suffering from major depressive disorder. However, taking folic acid alone does not appear to be effective. Folic acid has been used at a dose of 200 mcg to 15 mg per day for 6 months, in conjunction with antidepressants.

Posologie

posologieOral

posologie0.2 - 15 mg

duration6 months


Hyperhomocysteinemia
✪✪✪✪

Oral folic acid intake lowers fasting homocysteine levels by 20% to 30% in individuals with normal to moderately elevated homocysteine levels. The higher the homocysteine level and the lower the folate level before treatment, the greater the effect of folic acid supplementation. Further evidence suggests that the higher the initial homocysteine levels, the less folic acid dose required to achieve the maximum reduction in homocysteine levels. The effects of folic acid supplementation on homocysteine concentrations appear to be more significant in women than in men. Additionally, the combination of 50 to 250 mg of pyridoxine and folic acid seems to further decrease post-prandial hyperhomocysteinemia. This combination is generally recommended. Moreover, the daily addition of 500 mcg of vitamin B12 to folic acid results in an additional reduction of homocysteine levels by about 7% on average, but this effect is likely present only in individuals with a vitamin B12 deficiency. A dose of 200 mcg to 15 mg per day of folic acid for 4 weeks to 3.5 years has been used, with or without vitamin B12 and/or pyridoxine.

Posologie

posologieOral

posologie0.2 - 15 mg


Renal Insufficiency
✪✪✪✪

More than 85% of individuals with end-stage renal disease (ESRD) present with hyperhomocysteinemia, due to reduced renal absorption and metabolism of homocysteine in severe renal insufficiency, and hemodialysis may contribute to vitamin deficiencies. Oral folic acid intake reduces homocysteine levels in patients with ESRD. Daily doses of 800 mcg to 15 mg are generally used. In many studies, folic acid was combined with vitamin B12 and pyridoxine.

Posologie

posologieOral

posologie0.8 - 15 mg


Hypertension artérielle
✪✪✪✪✪

La recherche clinique montre que la prise quotidienne de 5 à 10 mg d'acide folique pendant au moins 6 semaines réduit la pression artérielle systolique de 2,03 mmHg et améliore la dilatation vasculaire chez les personnes hypertendues. Par ailleurs, certaines recherches ont montré que la prise d'acide folique en association avec l'énalapril (un médicament antihypertenseur) n'améliore pas la tension artérielle par rapport à l'énalapril seul.

Posologie

posologiePar voie orale

posologie5 - 10 mg

duration6 - semaines


Accident vasculaire cérébral
✪✪✪✪✪

Des études épidémiologiques ont montré que les personnes ayant un apport plus élevé en acide folique d'origine alimentaire ont un risque réduit d'accident vasculaire cérébral (AVC) hémorragique mais non ischémique. Plusieurs études faites dans des régions dépourvues des politiques d'enrichissement de l'alimentation en acide folique, ont constaté que la supplémentation en acide folique, avec ou sans autres vitamines B, réduit le risque d'AVC de 10% à 25%. L'effet semble être plus important lorsque l'acide folique est pris à faibles doses (généralement 0,8 mg par jour ou moins), chez les patients présentant un taux de cholestérol initial élevé, chez les patients ayant un taux d'homocystéine diminué d'au moins 20% et chez les patients ayant le taux de folate initial le plus faible.

Posologie

posologiePar voie orale

posologie0.8 mg


DMLA
✪✪✪✪✪

Une étude clinique menée à grande échelle, montre que la prise de 50 mg de pyridoxine par jour en association avec 1 mg de cyanocobalamine et 2,5 mg d'acide folique, pendant en moyenne 7,3 ans, réduit considérablement le risque de développement de DMLA (dégénérescence maculaire liée à l'âge) chez les femmes de 40 ans ayant des antécédents de maladie cardiovasculaire ou présentant des facteurs de risque de maladie cardiovasculaire, par rapport au placebo.

Posologie

posologiePar voie orale

posologie2.5 mg


Déclin cognitif
✪✪✪✪✪

Des recherches montrent que l'acide folique peut jouer un rôle dans la prévention du déclin cognitif, particulièrement chez les personnes âgées avec des niveaux élevés d'homocystéine, un facteur lié à des risques accrus de maladies neurodégénératives. Une étude a administré 800 mcg/jour d'acide folique pendant 3 ans à des participants ayant un taux élevé d'homocystéine, observant une amélioration notable dans plusieurs domaines cognitifs. D'autres études ont exploré l'impact de l'acide folique sur le déclin cognitif, montrant des résultats positifs. Une essai clinique chez des patients de plus de 65 ans avec un trouble cognitif léger a révélé qu'une supplémentation quotidienne de 400 mcg d'acide folique pendant deux ans améliorait les scores de QI. D'autres recherches ont trouvé des améliorations de la fonction cognitive avec des doses plus élevées. L'association de l'acide folique avec d'autres vitamines B ou le DHA a également montré des bénéfices.

Posologie

posologiePar voie orale

posologie0.4 - 15 mg


Synergies


Maladie d'Alzheimer
✪✪✪✪✪

Des preuves cliniques suggèrent que les personnes âgées ayant un apport alimentaire en folates ou une supplémentation en acide folique supérieure à l'apport nutritionnel recommandé, ont un risque réduit de développer la maladie d'Alzheimer par rapport aux personnes ayant un apport plus faible. La recherche clinique suggère que la prise de 1 mg d'acide folique par jour pendant 6 mois semble améliorer la réponse des patients atteints de la maladie d'Alzheimer aux inhibiteurs de cholinestérase par rapport au placebo.

Posologie

posologiePar voie orale

posologie1 - 1 mg

duration6 - mois


Properties


Essential

full-leaffull-leaffull-leaffull-leaf

Vitamin B9 acts as a coenzyme in intracellular metabolism and is essential for proper cell function. Indeed, in the body, folates are involved as cofactors in monocarbon unit transfer reactions essential for cellular metabolism, as they are involved in nucleotide synthesis, certain amino acid synthesis, and indirectly in the transfer of methyl groups. Vitamin B9 also plays a role in maintaining pregnancy and preventing fetal development issues (cleft palate, neural tube closure anomalies). Vitamin B9 deficiency is accompanied by various neurological disorders due to lack of ATP, GTP (coenzymes for phosphate group transfer), and phospholipids forming myelin sheaths. Moreover, in the bone marrow, a vitamin B9 deficiency leads to an anomaly in cellular maturation and division, resulting in abnormal red blood cell precursors, called megaloblasts. Megaloblasts are unable to complete maturation into red blood cells, and many are phagocytized by macrophages in the bone marrow, resulting in a type of anemia called megaloblastic anemia.

Usages associés

Vitamin B9 deficiency, Pregnancy, Fetal development, Fatigue

Cardiovascular

full-leaffull-leaffull-leafempty-leaf

Folic acid can improve endothelial dysfunction in individuals with atherosclerosis and at high risk of developing coronary artery disease. There is also evidence that folic acid can reduce concentrations of von Willebrand factor (necessary for platelet adhesion and factor VIII transport in blood clotting). Folic acid can also reduce fibrinogen concentrations (a clotting factor). Moreover, the remethylation of homocysteine to methionine requires folate and vitamin B12 as cofactors. Therefore, a folic acid deficiency is associated with increased homocysteinemia, known as a risk factor for cardiovascular diseases. The higher the homocysteine level, the better the response to folic acid treatment. Additionally, folic acid has little effect on normal homocysteine levels.

Usages associés

High blood pressure, Stroke, Hyperhomocysteinemia, Renal insufficiency

Cognitive Function

full-leaffull-leafempty-leafempty-leaf

Evidence suggests that low folate concentration may be linked to cerebral cortex atrophy. Moreover, in elderly individuals, functional and mental deterioration is sometimes associated with low folate levels. In Alzheimer's patients, folic acid may improve the response to cholinesterase inhibitors by reducing homocysteine levels.

Usages associés

Alzheimer's disease, Cognitive decline

Antidepressant

full-leaffull-leafempty-leafempty-leaf

Folic acid deficiency is common in people with depression. Low folate levels have been linked to poor responses to antidepressant treatment. In the general population, individuals with low folic acid levels or low dietary intake of folates have a higher risk of developing depression. Additionally, low folate levels have been linked to poor responses to antidepressant treatment. The exact role of folic acid in depression is still unknown, but it is necessary for the remethylation of homocysteine to methionine and for the conversion of s-adenosylmethionine (SAMe). Homocysteine remethylation to methionine is important because it prevents homocysteine accumulation, a risk factor for cardiovascular diseases and potentially for depression. Methionine is then converted into S-adenosylmethionine (SAMe), a molecule involved in the production of neurotransmitters like serotonin and dopamine, which are essential for mood. Folic acid also plays a role in the methylation of tetrahydrobiopterin, a key cofactor for hydroxylase enzymes involved in neurotransmitter production such as serotonin.

Usages associés

Depression

Anticancer

full-leafempty-leafempty-leafempty-leaf

Certain cancers like hematologic malignancies or colorectal cancers have been statistically associated with reduced folate levels. Potentially deleterious effects of folic acid supplementation on tumor progression have been suggested but remain debated.


Safety dosage

Nourrisson jusqu’à 12 mois : 80 µg

Enfant de 1 jusqu’à 3 an(s) : 120 µg - 200 µg

Adulte à partir de 18 an(s) : 330 µg - 1000 µg

Enfant de 4 jusqu’à 6 an(s) : 140 µg - 300 µg

Enfant de 7 jusqu’à 10 an(s) : 200 µg - 400 µg

Enfant de 11 jusqu’à 14 an(s) : 270 µg - 600 µg

Enfant de 15 jusqu’à 17 an(s) : 330 µg - 800 µg

Femme enceinte à partir de 18 an(s) : 600 µg - 1000 µg

Femme allaitante à partir de 18 an(s) : 500 µg - 1000 µg


Interactions

Médicaments

Anticonvulsifs : interaction modérée

L'acide folique peut être un cofacteur du métabolisme de la phénytoïne. A des doses de 1 mg par jour ou plus, l'acide folique peut réduire les taux sériques de phénytoïne chez certains patients. De plus, la phénytoïne réduit également les niveaux de folate sérique. L'acide folique peut avoir une activité convulsivante directe chez certaines personnes,ce qui peut altérer le contrôle des crises convulsives par le phénobarbital. La phénytoïne peut également réduire les niveaux de folate sérique. D'autre part, la carbamazépine peut réduire les taux sériques d'acide folique. Les mécanismes possibles comprennent une absorption réduite de l'acide folique et un métabolisme accru par les enzymes hépatiques.

5-fluorouracile : interaction modérée

Théoriquement, des doses élevées d'acide folique pourraient augmenter la toxicité du 5-fluorouracile. Une augmentation des effets secondaires gastro-intestinaux avec le 5-fluorouracile tels que la stomatite et la diarrhée a été décrite.

Méthotrexate : interaction modérée

Le méthotrexate exerce des effets cytotoxiques en empêchant la conversion de l'acide folique à la forme active nécessaire aux cellules. Il existe des preuves que les suppléments d'acide folique réduisent l'efficacité du méthotrexate dans le traitement de la leucémie lymphoblastique aiguë et, théoriquement, ils peuvent réduire son efficacité dans le traitement d'autres cancers. De plus, le méthotrexate peut réduire les niveaux de folate sérique.

Oestrogènes : interaction modérée

Des taux réduits de folate sérique peuvent survenir chez certaines femmes prenant des œstrogènes conjugués ou des contraceptifs oraux, mais cet effet est peu probable chez les femmes ayant un apport alimentaire suffisant en folates. Les mécanismes possibles par lesquels les œstrogènes contribuent à la carence en folate comprennent une absorption réduite de folate alimentaire, une excrétion accrue, une induction des enzymes hépatiques et une liaison accrue des folates aux protéines sériques.